
DrWSpahn

Chat GPT CoProgramming
How to use AI as a coworker on a complicated task

Wolfgang Spahn

2024-01-31

Figure 1: As AI imagines to do Math (by GPT-4)

Introduction
Large language models like ChatGPT are a great tool for software developers to quickly get code snippets,
information about fixes, configuration requirements or how to use xyz package in general. Everything that
is stored as code, documented as text, or discussed on forums like stackoverflow is now nicely available
in dialogue form. But how do you approach new ideas with AI? Just asking often fails and becomes
frustrating. You just get the usual fuzzy mainstream answer or even a hallucination.

Much research has been done in 2023 to improve such reasoning, planning and extrapolation skills in AI.
The undeniable success of improved reasoning by simply adding “go step by step” gave the right hint.
Since then, many different methods of orchestrating step-by-step convergence towards a final answer could
unlock these buried capabilities of LLMs, such as Prompt Breeder, Chain-of-Thought (CoT), Zero-shot
CoT, Program-of-Thoughts, AutoCoT, Automatic Prompt Engineer, Zero-shot prompt, Plan-and-Solve
etc.. Using these findings as a developer opens the door to use ChatGPT as a co-programming agent for
jointly addressing new areas.

To illustrate how far you can get with this, I have put together this dialogue. The task is: “Let’s make a
graph spring layout function for NetworkX for planar graphs, which is really planar”. Behind this is a
real motivation as the NetworkX built-in function is not very impressive, and other standalone Python
packages require C++ or Rust code, to be build from scratch. So it would be nice to have a numpy

1

DrWSpahn

implementation for network from AI? But asking directly does not help. It gives us a suggestion that
barely works, not any better than the build in one.

Following the lessons learned from research means, that we need to have a concept how to reach our goal,
and we have to take one step at a time. This avoids cognitve overload, of AI and human:

• separate the maths and concepts from coding.
• start with a just an implementation sketch,
• implement one step at a time,

– carefully analyse the answer we get
– give concrete feedback what to do next, or where to correct
– carefully blend in additional complexity

It seams to be important to stay in the driver’s seat. Only when the base is solidified, we move on to the
next level of complexity. The key is to understand that the control and top-level guidance remains on the
human side.

As you can see below, this kind of co-programming allows you to explore the problem, avoid hallucinations
and ultimately get good results. If your plan is flawed, you will run into dead ends. The AI may even
lead you astray. So you have to step back and think again. This is actually a plus for me, as it gives a
chance to learn about the options that don’t work, even if they are following a likely path.

It took 22 lines of input and gave back 310 lines, about 1/3 text and 2/3 code. It’s a kind of magic that
AI can be such a competent companion, which opens up a new way of developing It feels very rewarding
and collaborative.

As a nice side effect, you get documentation of the thought process that you would never have written
down in the traditional way. It is a huge gain in speed and ability to surface your train of thought.

Happy hacking!

Dialog
User
Hey ChatGPT! I’d like to solve a programming problem with you. Are you up for it?

ChatGPT
Of course! I’m here to help. Please go ahead and tell me about the programming problem you’re facing.

User
I would like to draw a graph using a physical spring model. Let’s define the force model first.

• there is a spring force along the edge i,j
• we assume every node has a positive charge, so its repulsive.
• there should be a minor fixed negative charge to keep the nodes centered.

Could you please write down the math first.

ChatGPT
Certainly! To model the graph with a physical spring model, we’ll use a combination of forces:

1. Spring Force (Hooke’s Law): This force acts along the edge between two nodes i and j. According
to Hooke’s Law, the force exerted by a spring is proportional to the displacement from its rest length.
If dij is the distance between nodes i and j, and L is the natural length of the spring (or the desired
separation between nodes), the spring force Fspring is given by:

Fspring = ks · (dij − L)

2

DrWSpahn

where ks is the spring constant.

2. Electrostatic Repulsive Force: Since each node has a positive charge, they repel each other. The
repulsive force between any two nodes i and j can be modeled similar to Coulomb’s law:

Frepulse = kr

d2
ij

where kr is a constant of proportionality for the repulsive force, and dij is the distance between
nodes i and j.

3. Fixed Negative Charge (Centering Force): To keep the nodes centered, we can introduce a
centering force that attracts each node towards the center of the graph. Let C be the center point of
the graph, and $ p_i $ be the position of node i. The centering force $ F_{center} $ on node i is:

Fcenter = −kc · (pi − C)

where kc is a constant that determines the strength of the centering force.

The total force on each node is then the sum of these forces. For node i, the total force Fi is the sum of
the spring force with each connected node, the repulsive force with every other node, and the centering
force. This can be mathematically expressed as:

Fi =
∑

j∈neighbors of i

Fspringij
+

∑
j ̸=i

j∈all nodes

Frepulseij
+ Fcenteri

In a simulation, you would calculate these forces for each node at each time step and update their positions
accordingly, typically using a numerical integration method like Euler’s method. The constants ks, kr,
and kc are parameters that you can tune to get the desired behavior in your graph layout.

User
How would you update the positions after a time step dt?

ChatGPT
To update the positions of the nodes in the graph for a time step ∆t, you would typically use a numerical
integration method. Euler’s method is one of the simplest and most commonly used methods for this
purpose. Here’s how you can apply it:

1. Calculate Forces: For each node, calculate the total force acting on it using the force model we
discussed earlier. This involves computing the spring force for each connected node, the repulsive
force from every other node, and the centering force.

2. Update Velocities: The force on each node will cause a change in its velocity. According to
Newton’s second law, F = m · a, where F is the force, m is the mass of the node (you can assume a
unit mass for simplicity), and a is the acceleration. The change in velocity (∆v) is given by:

∆v = F

m
· ∆t

Since we’re assuming unit mass, this simplifies to:

∆v = F · ∆t

Update the velocity of each node by adding this change in velocity to its current velocity:

3

DrWSpahn

vnew = vcurrent + ∆v

3. Update Positions: Finally, update the position of each node based on its velocity. The change in
position (∆p) is given by:

∆p = v · ∆t

Update the position of each node by adding this change in position to its current position:

pnew = pcurrent + ∆p

This process is repeated for each node in the graph at each time step. By continuously updating the forces,
velocities, and positions, the nodes will move according to the physical model defined by the spring and
electrostatic forces, eventually settling into a stable configuration that reflects the structure of the graph.

It’s important to note that Euler’s method is not the most accurate integration method, but it is simple
and often sufficient for visualizations like graph layouts. More sophisticated methods, such as Runge-Kutta
methods, can be used if greater accuracy is needed.

User
Great, now we have the math. How implement this with numpy for the dynamics and using networkx for
the graph.

ChatGPT
To implement the spring model graph drawing using NumPy and NetworkX, we will follow these steps:

1. Initialize the Graph: Use NetworkX to create and initialize your graph.

2. Set Initial Positions: Assign initial positions to each node. You can place them randomly or in a
grid pattern.

3. Simulation Loop: Implement a loop to simulate the dynamics of the system. In each iteration of
this loop, you will:

• Calculate the forces acting on each node.
• Update the velocities and positions of the nodes.
• Optionally, add a condition to stop the simulation when the system becomes stable or after a

certain number of iterations.

Let’s start by setting up the basic structure for the implementation. Note that the following code will be
a simplified version, and you might need to adjust parameters like the spring constant, repulsive force
constant, and centering force constant for your specific use case.

import networkx as nx
import numpy as np

Create a graph
G = nx.Graph()
Add nodes and edges to G

Initialize node positions (e.g., randomly)
num_nodes = len(G.nodes)
positions = np.random.rand(num_nodes, 2)

Constants
k_s = 1.0 # Spring constant

4

DrWSpahn

k_r = 1.0 # Repulsive force constant
k_c = 0.1 # Centering force constant
L = 1.0 # Natural length of the spring
dt = 0.01 # Time step

Initialize velocities
velocities = np.zeros((num_nodes, 2))

Simulation loop
for step in range(1000): # Number of iterations

Reset forces
forces = np.zeros((num_nodes, 2))

Calculate forces
for i in range(num_nodes):

for j in range(i + 1, num_nodes):
Calculate spring force and repulsive force between i and j

Update forces[i] and forces[j] accordingly

Update velocities and positions
for i in range(num_nodes):

Update velocity
Update position

Optional: Check for convergence

Final positions
final_positions = positions

In this structure, you need to fill in the calculations for the spring force, repulsive force, and update the
positions and velocities of the nodes. The choice of constants like k_s, k_r, and k_c will greatly affect the
behavior of the system, so you may need to experiment with these values.

Remember, the spring force acts only between connected nodes (you can get this information from the
graph), while the repulsive force acts between all pairs of nodes. The centering force acts on each node
individually, pulling it towards the center of the graph.

After completing the simulation loop, final_positions will contain the coordinates of the nodes in your
graph’s layout. You can then use these coordinates to draw the graph using NetworkX’s drawing functions.

User
Please add the forces according to the math.

ChatGPT
Sure, let’s add the calculations for the spring force, repulsive force, and centering force according to the
mathematical model we discussed earlier. We’ll update the forces for each pair of nodes and then update
the velocities and positions. Here’s how you can do it:

import networkx as nx
import numpy as np

Create a graph
G = nx.Graph()
Add nodes and edges to G

5

DrWSpahn

Initialize node positions (e.g., randomly)
num_nodes = len(G.nodes)
positions = np.random.rand(num_nodes, 2)

Constants
k_s = 1.0 # Spring constant
k_r = 100.0 # Repulsive force constant
k_c = 0.1 # Centering force constant
L = 1.0 # Natural length of the spring
dt = 0.01 # Time step

Initialize velocities
velocities = np.zeros((num_nodes, 2))

Simulation loop
for step in range(1000): # Number of iterations

Reset forces
forces = np.zeros((num_nodes, 2))

Calculate forces
for i in range(num_nodes):

for j in range(num_nodes):
if i != j:

Vector from i to j
vec_ij = positions[j] - positions[i]
distance_ij = np.linalg.norm(vec_ij)

Spring force (only if i and j are connected)
if G.has_edge(i, j):

spring_force = k_s * (distance_ij - L) * vec_ij / distance_ij
forces[i] += spring_force

Repulsive force
repulsive_force = k_r / (distance_ij**2) * vec_ij / distance_ij
forces[i] -= repulsive_force

Centering force
centering_force = -k_c * positions[i]
forces[i] += centering_force

Update velocities and positions
for i in range(num_nodes):

Update velocity
velocities[i] += forces[i] * dt

Update position
positions[i] += velocities[i] * dt

Final positions
final_positions = positions

In this code:

• Spring Force: Applied only between connected nodes. It’s proportional to the displacement from
the natural length of the spring.

• Repulsive Force: Applied between all pairs of nodes, inversely proportional to the square of the
distance between them.

6

DrWSpahn

• Centering Force: Pulls each node towards the origin to keep the graph centered.

Please note that the constants k_s, k_r, k_c, and L might need tuning based on your graph’s specific
needs. Large graphs or graphs with very different structures might require different settings for these
constants to achieve a visually pleasing and informative layout.

Also, this is a basic implementation. For larger graphs or for more accurate simulations, you might need
more sophisticated integration methods, adaptive time stepping, or optimizations for force calculations.

User
I think networkx can create random planar graphs. Please use this to create a test graph.

ChatGPT
I send ChatGPT in the wrong direction: it halluzinated there is a readom planar graph, but there is none.

User
I get: AttributeError: module ‘networkx’ has no attribute ‘random_planar_graph’

ChatGPT
I apologize for the confusion. It seems that the version of NetworkX you are using does not include the
random_planar_graph function. This function might be available in a different version or not at all. As
an alternative, we can create a planar graph using another method provided by NetworkX.

One common approach is to use the nx.triangular_lattice_graph function, which creates a planar
graph in the form of a triangular lattice. Another option is to use nx.random_geometric_graph, which
generates a random geometric graph, and these are often planar or close to planar for a suitable choice of
radius.

Let’s use nx.random_geometric_graph for our purpose:

Create a random geometric graph which is likely to be planar
num_nodes = 20
radius = 0.25 # Adjust the radius to control edge density
G = nx.random_geometric_graph(num_nodes, radius)

Rest of the code remains the same...

This function places num_nodes nodes uniformly at random in the unit cube and adds an edge between
any pair of nodes whose distance is at most radius. Adjust the radius parameter to control the density
of edges in the graph. A smaller radius will lead to fewer edges (and a higher chance of being planar),
while a larger radius will create more edges.

User
I get some result. Spreads only into one direction. I don’t know what’s going on.

7

DrWSpahn

Figure 2: A first layout, not good. What’s going on here?

for debugging it would be nice to step through the simulation. Can you change the code for this

ChatGPT
Certainly! To enable stepping through the simulation for debugging purposes, you can modify the code to
include a loop that waits for user input at each iteration. This way, you can observe the changes in the
graph after each time step and proceed to the next step at your own pace.

Here’s the modified code:

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

Create a random geometric graph
num_nodes = 20
radius = 0.25
G = nx.random_geometric_graph(num_nodes, radius)

Initialize node positions randomly
positions = np.random.rand(num_nodes, 2)

Constants for the spring model
k_s = 1.0 # Spring constant
k_r = 100.0 # Repulsive force constant
k_c = 0.1 # Centering force constant
L = 1.0 # Natural length of the spring
dt = 0.01 # Time step

Initialize velocities
velocities = np.zeros((num_nodes, 2))

Function to update positions
def update_positions(positions, velocities, G, dt):

forces = np.zeros((num_nodes, 2))
for i in range(num_nodes):

for j in range(num_nodes):
if i != j:

vec_ij = positions[j] - positions[i]
distance_ij = np.linalg.norm(vec_ij)

8

DrWSpahn

if G.has_edge(i, j):
spring_force = k_s * (distance_ij - L) * vec_ij / distance_ij
forces[i] += spring_force

repulsive_force = k_r / (distance_ij**2) * vec_ij / distance_ij
forces[i] -= repulsive_force

centering_force = -k_c * positions[i]
forces[i] += centering_force

velocities += forces * dt
positions += velocities * dt
return positions, velocities

Interactive simulation loop
for step in range(1000): # Number of iterations

positions, velocities = update_positions(positions, velocities, G, dt)

Plot current state
plt.clf()
nx.draw(G, pos={i: positions[i] for i in range(num_nodes)}, with_labels=True)
plt.title(f"Step: {step}")
plt.pause(0.1) # Adjust the pause time as needed

Wait for user input to proceed to the next step
input("Press Enter to continue to the next step...")

plt.show()

In this modified code:

• After each update of positions and velocities, the graph is redrawn to reflect the current state.
• The plt.pause(0.1) function is used to update the plot. You can adjust the pause time as needed.
• The input("Press Enter to continue to the next step...") line waits for you to press Enter

before proceeding to the next iteration. This allows you to observe each step of the simulation and
proceed at your own pace.

Run this script, and you’ll be able to step through each iteration of the simulation by pressing Enter,
allowing for detailed observation and debugging.

User
It is good at some steps, but it oscillates. I think, we need to add damping

ChatGPT
To address the oscillation issue, you can add a damping force to the system. Damping is a force opposite
in direction to the velocity of the node, which helps to reduce oscillations and stabilize the system. The
damping force can be proportional to the velocity, a common approach in physics-based simulations to
simulate friction or air resistance.

Here’s how you can modify the code to include damping:

1. Add a Damping Constant: Introduce a damping constant γ to the system.

2. Apply Damping to Velocities: In each iteration, reduce the velocity of each node by a factor
proportional to this constant and its current velocity.

Here’s the updated code with damping:

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

9

DrWSpahn

Create a random geometric graph
num_nodes = 20
radius = 0.25
G = nx.random_geometric_graph(num_nodes, radius)

Initialize node positions randomly
positions = np.random.rand(num_nodes, 2)

Constants for the spring model
k_s = 1.0 # Spring constant
k_r = 100.0 # Repulsive force constant
k_c = 0.1 # Centering force constant
L = 1.0 # Natural length of the spring
dt = 0.01 # Time step
gamma = 0.9 # Damping constant

Initialize velocities
velocities = np.zeros((num_nodes, 2))

Function to update positions
def update_positions(positions, velocities, G, dt, gamma):

forces = np.zeros((num_nodes, 2))
for i in range(num_nodes):

for j in range(num_nodes):
if i != j:

vec_ij = positions[j] - positions[i]
distance_ij = np.linalg.norm(vec_ij)
if G.has_edge(i, j):

spring_force = k_s * (distance_ij - L) * vec_ij / distance_ij
forces[i] += spring_force

repulsive_force = k_r / (distance_ij**2) * vec_ij / distance_ij
forces[i] -= repulsive_force

centering_force = -k_c * positions[i]
forces[i] += centering_force

velocities += forces * dt
velocities *= gamma # Apply damping to velocities
positions += velocities * dt
return positions, velocities

Interactive simulation loop
for step in range(1000): # Number of iterations

positions, velocities = update_positions(positions, velocities, G, dt, gamma)

Plot current state
plt.clf()
nx.draw(G, pos={i: positions[i] for i in range(num_nodes)}, with_labels=True)
plt.title(f"Step: {step}")
plt.pause(0.1) # Adjust the pause time as needed

Wait for user input to proceed to the next step
input("Press Enter to continue to the next step...")

plt.show()

In this updated code, the velocities *= gamma line applies the damping. The damping constant γ is

10

DrWSpahn

set to 0.9, but you can adjust it as needed. A value closer to 1 means less damping (more movement), and
a value closer to 0 means more damping (quicker stabilization).

User
That’s somewhat better, but the test graph is not fully connected. Let’s try it with nx.triangular_lattice_graph
to get e full picture.

Figure 3: Somewhat better. But not good.

ChatGPT
Great choice! The nx.triangular_lattice_graph creates a graph in the form of a triangular lattice,
which is inherently planar and can be an interesting case to visualize with the spring model. Let’s modify
the code to use nx.triangular_lattice_graph instead of nx.random_geometric_graph.

Here’s the updated code:

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

Create a triangular lattice graph
rows = 4 # Number of rows in the lattice
cols = 4 # Number of columns in the lattice
G = nx.triangular_lattice_graph(rows, cols)

Map the node labels to integers (0, 1, 2, ...)
G = nx.convert_node_labels_to_integers(G)

Number of nodes
num_nodes = len(G.nodes)

Initialize node positions randomly
positions = np.random.rand(num_nodes, 2)

Constants for the spring model
k_s = 1.0 # Spring constant
k_r = 100.0 # Repulsive force constant
k_c = 0.1 # Centering force constant
L = 1.0 # Natural length of the spring
dt = 0.01 # Time step

11

DrWSpahn

gamma = 0.9 # Damping constant

Initialize velocities
velocities = np.zeros((num_nodes, 2))

Function to update positions
def update_positions(positions, velocities, G, dt, gamma):

forces = np.zeros((num_nodes, 2))
for i in range(num_nodes):

for j in range(num_nodes):
if i != j:

vec_ij = positions[j] - positions[i]
distance_ij = np.linalg.norm(vec_ij)
if G.has_edge(i, j):

spring_force = k_s * (distance_ij - L) * vec_ij / distance_ij
forces[i] += spring_force

repulsive_force = k_r / (distance_ij**2) * vec_ij / distance_ij
forces[i] -= repulsive_force

centering_force = -k_c * positions[i]
forces[i] += centering_force

velocities += forces * dt
velocities *= gamma # Apply damping to velocities
positions += velocities * dt
return positions, velocities

Interactive simulation loop
for step in range(1000): # Number of iterations

positions, velocities = update_positions(positions, velocities, G, dt, gamma)

Plot current state
plt.clf()
nx.draw(G, pos={i: positions[i] for i in range(num_nodes)}, with_labels=True)
plt.title(f"Step: {step}")
plt.pause(0.1) # Adjust the pause time as needed

Wait for user input to proceed to the next step
input("Press Enter to continue to the next step...")

plt.show()

In this code, we create a triangular lattice graph with rows rows and cols columns. You can adjust
these parameters to change the size and shape of the lattice. The rest of the code remains the same as
before, applying the spring model to this lattice structure and allowing you to step through the simulation
interactively.

User
Layout does not really get planar. It get’s stuck. I think we have to go 3D and the project it back to 2D.
What do you think?

12

DrWSpahn

Figure 4: For the triangular graph we get stuck.

ChatGPT
Moving to a 3D simulation and then projecting back to 2D is a good strategy, especially for complex
graphs where a strictly 2D approach might result in nodes getting “stuck” or overly congested. In 3D,
nodes have more space to move around, which can help in finding a more optimal layout before projecting
back to 2D. This approach can provide a better visualization, particularly for dense or intricate graphs.

Here’s how you can modify the code for a 3D simulation:

1. Initialize Node Positions in 3D: Start with nodes positioned randomly in a 3D space.
2. Update the Forces Calculation: Apply the same forces (spring, repulsive, and centering) in 3D.
3. Project the Final 3D Positions Back to 2D: After the simulation, project the 3D coordinates

to 2D for visualization. A simple way to do this is to just ignore one of the dimensions (e.g., the
z-coordinate).

Let’s implement these changes:

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

Create a triangular lattice graph
rows = 4
cols = 4
G = nx.triangular_lattice_graph(rows, cols)
G = nx.convert_node_labels_to_integers(G)

Initialize node positions in 3D randomly
num_nodes = len(G.nodes)
positions = np.random.rand(num_nodes, 3) # 3D positions

Constants for the spring model (in 3D)
k_s = 1.0
k_r = 100.0
k_c = 0.1
L = 1.0
dt = 0.01
gamma = 0.9

Initialize velocities in 3D
velocities = np.zeros((num_nodes, 3))

13

DrWSpahn

Function to update positions in 3D
def update_positions_3d(positions, velocities, G, dt, gamma):

forces = np.zeros((num_nodes, 3))
for i in range(num_nodes):

for j in range(num_nodes):
if i != j:

vec_ij = positions[j] - positions[i]
distance_ij = np.linalg.norm(vec_ij)
if G.has_edge(i, j):

spring_force = k_s * (distance_ij - L) * vec_ij / distance_ij
forces[i] += spring_force

repulsive_force = k_r / (distance_ij**2) * vec_ij / distance_ij
forces[i] -= repulsive_force

centering_force = -k_c * positions[i]
forces[i] += centering_force

velocities += forces * dt
velocities *= gamma
positions += velocities * dt
return positions, velocities

Interactive simulation loop in 3D
for step in range(1000):

positions, velocities = update_positions_3d(positions, velocities, G, dt, gamma)

Project the positions back to 2D for visualization
positions_2d = positions[:, :2]

Plot current state in 2D
plt.clf()
nx.draw(G, pos={i: positions_2d[i] for i in range(num_nodes)}, with_labels=True)
plt.title(f"Step: {step}")
plt.pause(0.1)

Wait for user input
input("Press Enter to continue to the next step...")

plt.show()

In this code, the positions and velocities are now 3D vectors. The force calculations remain essentially the
same but are applied in 3D space. After the simulation, the 3D positions are projected to 2D by taking
only the first two components (x and y) for plotting. This approach should provide a more relaxed and
potentially planar final layout.

User
there is something wrong I don’t see any movement

ChatGPT
If you’re not observing any movement in the simulation, it could be due to a few factors such as the
forces balancing out too quickly, the damping being too high, or the time step being too small. Let’s
troubleshoot and make a few adjustments to the code:

1. Check Initial Positions: Ensure that the initial positions are not too close to each other, as this
might cause large repulsive forces that immediately cancel out any movement.

2. Adjust Constants: We can try adjusting the constants for the spring constant (k_s), repulsive

14

DrWSpahn

force constant (k_r), and the damping constant (gamma). Sometimes, fine-tuning these constants is
necessary to get the desired dynamics.

3. Increase Time Step: If the time step (dt) is too small, movements might be too subtle to notice
in a short number of iterations. Increasing it might help.

4. Reduce Damping: A high damping constant can quickly diminish the velocities, leading to very
little movement. Try reducing it.

5. Visualize Each Step: Ensure that each step is being visualized correctly.

Let’s modify the code with these considerations:

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

Create a triangular lattice graph
rows = 4
cols = 4
G = nx.triangular_lattice_graph(rows, cols)
G = nx.convert_node_labels_to_integers(G)

Initialize node positions in 3D randomly
num_nodes = len(G.nodes)
positions = np.random.rand(num_nodes, 3) * 10 # Spread out the initial positions

Constants for the spring model (in 3D)
k_s = 0.1 # Lower spring constant
k_r = 1.0 # Adjust repulsive force constant
k_c = 0.01 # Lower centering force constant
L = 1.0 # Natural length of the spring
dt = 0.1 # Increase time step
gamma = 0.1 # Lower damping constant

Initialize velocities in 3D
velocities = np.zeros((num_nodes, 3))

Function to update positions in 3D
[Same as before]

Interactive simulation loop in 3D
[Same as before]

plt.show()

In this updated code:

• Initial positions are spread out more by multiplying with a factor (e.g., * 10).
• Constants k_s, k_r, k_c, dt, and gamma are adjusted to encourage movement and reduce immediate

damping.

Run this modified code to see if the movement is more apparent. Adjusting these parameters may require
some experimentation to achieve the desired behavior, especially for different types of graphs.

User
Now it moves, but super slow.

15

DrWSpahn

ChatGPT
If the movement is very slow, we should consider adjusting the parameters further to make the dynamics
more pronounced and faster. Specifically, we can:

1. Increase the Time Step (dt): A larger time step will result in larger updates to positions in each
iteration, making movements more noticeable.

2. Adjust Force Constants (k_s, k_r, k_c): Increasing the spring constant (k_s) and/or the
repulsive force constant (k_r) can make the forces stronger, leading to faster movement. However,
be cautious with large values as they can cause the system to become unstable.

3. Decrease Damping (gamma): Lowering the damping constant will reduce the rate at which
movement is dampened, allowing nodes to move more freely.

Let’s update the code with these changes:

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

Create a triangular lattice graph
rows = 4
cols = 4
G = nx.triangular_lattice_graph(rows, cols)
G = nx.convert_node_labels_to_integers(G)

Initialize node positions in 3D randomly
num_nodes = len(G.nodes)
positions = np.random.rand(num_nodes, 3) * 10 # Spread out the initial positions

Constants for the spring model (in 3D)
k_s = 1.0 # Increase spring constant
k_r = 10.0 # Increase repulsive force constant
k_c = 0.1 # Adjust centering force constant
L = 1.0 # Natural length of the spring
dt = 0.5 # Increase time step
gamma = 0.3 # Adjust damping constant

Initialize velocities in 3D
velocities = np.zeros((num_nodes, 3))

Function to update positions in 3D
[Same as before]

Interactive simulation loop in 3D
[Same as before]

plt.show()

In this adjusted code:

• The time step dt is increased to 0.5 to make each iteration’s movement more substantial.
• The constants k_s and k_r are increased to amplify the spring and repulsive forces.
• The damping constant gamma is adjusted to a moderate value to allow movement but prevent

excessive oscillation.

Run this updated code and observe the changes. If the system is still moving too slowly, you may need
to further tweak these parameters. Finding the right balance can sometimes be a bit of trial and error,
especially for complex or large graphs.

16

DrWSpahn

User
It works great. But sometime the projection is not good. Can we calc the major orientation in space, and
do a sort of orthogonal projection?

Figure 5: Layout is good, but sometimes only visible from the side

ChatGPT
Yes, you can calculate the major orientation in space of the node positions and then perform an orthogonal
projection to visualize the graph in a way that emphasizes this orientation. This approach can provide a
more informative visualization by aligning the graph with its principal axes.

To achieve this, you can use Principal Component Analysis (PCA). PCA is a statistical technique that
can be used to identify the principal axes of a dataset, which are the directions in which the data varies
the most. By projecting the data onto these axes, you can create a 2D representation that captures the
most significant relationships within the 3D data.

Here’s how you can do it:

1. Perform PCA: Use PCA to find the principal axes of the node positions.
2. Project onto the Principal Axes: Project the 3D positions onto the two principal axes to get a

2D representation.
3. Visualize the Result: Plot the projected positions.

Let’s update the code to include PCA and the orthogonal projection:

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from sklearn.decomposition import PCA

[Previous code for creating the graph and running the simulation]

Perform PCA on the final positions
pca = PCA(n_components=2)
positions_2d = pca.fit_transform(positions)

Plot the projected positions
plt.figure(figsize=(8, 6))
nx.draw(G, pos={i: positions_2d[i] for i in range(num_nodes)}, with_labels=True)
plt.title("Graph Projected onto Principal Axes")
plt.show()

17

DrWSpahn

In this updated code:

• After the simulation, we use PCA from sklearn.decomposition to reduce the dimensionality of
the positions array from 3D to 2D.

• The fit_transform method of the PCA object both fits the model to the data and then transforms
the data onto the principal axes.

• Finally, we plot the graph using these 2D positions.

This visualization will align the graph along its major axes of variation, potentially providing a clearer
and more meaningful representation of the graph structure.

User
Wow, finally it works very good.

Figure 6: A 3D spring particle layout now looking good

ChatGPT
You’re welcome! I’m glad to hear that the solution worked well for you. If you have any more questions
in the future, whether they’re about programming, data visualization, or anything else, feel free to ask.
Happy coding!

18

	Introduction
	Dialog
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT
	User
	ChatGPT

